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Bimodality is offered as a signal of phase transitions.
The history of bimodality traces back to Hill’s text book
“Thermodynamics of small systems” and refers to the
fact that given the chemical potential µ or p and T con-
stant either one of the two phases is present and not
both in arbitrary relative amounts such as in standard
thermodynamics where all intermediate densiti. The
reason is the interface created by the coexisting phases
and the associated cost in free energy which should de-
press phase coexistence by a factor of exp (−c∆s/T ) ∼

exp
(

−kN2/3/T
)

, where c is the surface tension, ∆s is the
surface created and k is the surface free energy coefficient
and N is the number of particles in the system with the
surface. A criticism against this proposition is that it
holds only if the pure phases do not have surfaces and
surface energies. In general this is not the case: surface
is always present and how it affects coexistence depends
on the configurations and boundary conditions.

Let us analyze first a case that comes closest to Hill’s
expectations. This is actually offered to us by a recent
calculation based upon an Ising system which is per-
formed grand canonically (i.e. at constant µ, T ) in a
finite cell of a given size, with periodic boundary condi-
tions. It is observed that, above the critical temperature
Tc the mean density has a single peak in the probability
distribution P corresponding to the single fluid phase.
Below Tc two well separated peaks in P appear, one cor-
responding to the vapor, the other to the liquid. Each
realization is either all vapor like or all liquid, while es-
sentially no realization corresponds to the mixture of the
two phases. This is called bimodality and the reason
for this is Hill’s original explanation: the mixed phase
involves the appearance of interfaces between the two
phases with the associated free energy increase.

Convincing as this may be, this example works only
because of the peculiarity of the periodic boundary con-
ditions. Since the calculation is performed grand canon-
ically, interface surfaces do not appear only if the vapor
fills the cell and the rest of the universe generated by
the periodic boundary conditions, or if the liquid fills the
cell and the rest of the universe generated by the peri-
odic boundary conditions at the same µ. The removal
of periodic boundary conditions immediately creates a
surface around the cell with the attendant surface free
energy even if a single phase is present. In particular,
since the surface free energy coefficient is larger for the
case of the liquid-vacuum interface than for that of the
vapor-vacuum interface, it follows that the bimodality
disappears and only the vapor like phase will be mani-
fested. This is interesting because a liquid-like cell read-
ily compares with a hot nucleus, which would be then
unstable at the same µ, T with respect to the vapor-like

phase. Thus bimodality in nuclear systems seems to be
excluded.

A more realistic spherical geometry suggests a spheri-
cal liquid drop surrounded by its vapor also confined in
a spherical shell extending into vacuum. Even in this
case, which is a very realistic representation of a nucleus
surrounded by its vapor, there can never be bimodality,
since as before the liquid to vapor surface energy is much
larger than the vapor to vacuum surface energy.

In order to appreciate the role of boundary conditions
on the uni-modality, let us consider the following ped-
agogical example. We consider only the two phase in-
terface to be active while we assume the phase-container
interface to be inert. For simplicity the two phases are
taken to have the same density. Consider a sequence of
cylinders connected alternately by their bases and ver-
ticies shown in Fig. 1 The free energy has a maximum
at each vertex connection and the system portrays nth-
modality as shown in Fig. 1.
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FIG. 1: Top: a side view of a sequence of cylinders (extending
to infinity to the left and to the right) connected alternately
by their bases and verticies. On the left is one phase shown
by smaller red open circles, on the right is another phase
shown by larger blue filled squares. The dashed line represents
the interface between the two phases. The surfaces of the
cylinders are periodic. The surface area of the interface is
minimized at the meeting of the vertices. Thus the system has
the greatest probability of being in two possible phases with
the position of the interface being at the meeting of the base
and vertex; the system is n

th-modal Bottom the probability
distribution as a function of the interface position showing
the n

th-modal nature of the system.


